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Abstract— Hardware accelerators, used as application-
specific extensions to the computational capabilities of a 
system, are efficient mechanisms to enhance the performance 
and reduce the power dissipation in a System On Chip (SoC). 
These accelerators execute on the computationally critical part 
of the application, and offload work from the main processors. 
In this paper, we present a design automation tool that 
generates accelerators based on a given application kernel. The 
accelerators are processing streaming data, and support a 
programming model which can naturally express a large 
number of embedded applications, and which results in 
efficient and fast hardware implementations. We demonstrate 
the applicability of the tool for architectural space exploration 
for a number of media applications, with results on area, 
throughput, and clock speeds. 

I. INTRODUCTION 
he levels of integration of modern FPGAs have 
advanced to a point where the performance and 

flexibility are sufficient to map all functions of a complex 
SoCs into a single die. FPGA manufacturers have 
embedded fixed functionality cores such as general purpose 
processors, multipliers, multi-ported SRAM memories, and 
DSP slices in order to speed-up commonly used 
applications. At the same time, tool vendors have offered a 
plethora of pre-defined peripherals, fixed IP functions, and 
even synthesizable processor cores for the designer to 
customize the chip. The availability of a tool flow that 
abstracts out the particular hardware structures and presents 
a software-only front end interface to the application 
developer is a necessary step to precipitate the acceptance 
of FPGAs as SoC platforms.  

Typically, scalar processors are reasonably efficient in 
handling normal conditional code with a low degree of 
instruction and data level parallelism. However, they are 
inefficient for high throughput, parallelizable code due to 
limited support of all kinds of parallelism (instruction, data, 
and task). They are further limited by the low memory 
bandwidth due to the narrow pipes to the main core.  

 In this paper, we describe an automation process which 
maps streaming data flow graphs (sDFG) to accelerators of 
the main scalar core. The streaming programming model 
assumes that the kernels process streams of data with a 
relatively limited lifetime, and deterministic memory access 
pattern. The streaming model decouples the description of 
memory access sequences from the computation within a 
kernel, thus making the customization of each of these two 
components (computation and memory access) easier and 

more re-usable.  
The design space exploration involves an iterative design 

cycle in which Pareto-optimal implementations of a given 
sDFG are produced under user and system constraints. For 
each iteration, a search space iterator instantiates a set of 
parameters that meet the given constraints, then a scheduler 
produces a schedule of operations optimized for throughput, 
and finally an RTL generation back-end tool produces the 
hardware description of the accelerator. Each generated 
accelerator is synthesized and implemented on an  FPGA to 
be evaluated in terms of stream throughput, area, and clock 
speed, and later classified as Pareto-optimal or eliminated 
from consideration.  

The contributions of the papers are the following:  
• first, we propose the usage of the streaming paradigm 

(sDFGs) for application acceleration in a SoC-based 
reconfigurable fabric.  

• second, we propose a template-based, automated method 
to perform architectural exploration on the accelerated 
application by evaluating the design space separately for 
the stream unit and the stream computational unit.  

• and third, we explain how these concepts are placed in the 
context of a bus-based SoC design and how the 
accelerators are connected to the rest of the system. 
The rest of the paper is organized as follows: Section II 

gives background information on the streaming 
programming paradigm and explains how it exploits 
technology trends that favor computation over 
communication. Section III details our template-based 
methodology, and section IV presents a set of embedded 
applications and the results of the method on a Xilinx 
Virtex-4 FPGA. Section V gives a summary of previous 
work on the relative areas, and Section VI presents the 
conclusion and future work. 

II. STREAM PROGRAMMING MODEL 

A. Architecture 
The hardware accelerators generated by our method 

follow the streaming architectural paradigm [4]. They act as 
filters on input streaming data to generate the output 
streaming data specified by the streaming data flow graphs. 
Stream kernels exhibit a large degree of data and task level 
parallelism, with regular or even statically defined 
communication patterns [1]. 

The regularity of data access and the short lifetime of the 

T 



 2

stream data allow for efficient optimization of the 
communication and the computational portions of the 
algorithm. Even more importantly, they make possible the 
decoupling of the stream access from the computation and 
their separate optimization. 

 Under this model, memory load/store operations no 
longer need to be scheduled amongst compute operations 
and optimal scheduling of operations now does not depend 
upon memory latencies. With this independence, the 
underlying memory system may be changed or may exhibit 
variable latencies, as with caches, with no effect on the 
computation schedule. 

The decoupled memory access allows data pre-fetching 
to occur during computation. The programmer describes the 
shape and location of data in memory using stream 
descriptors. This decoupling allows the stream units to take 
advantage of available bandwidth to prefetch data before it 
is needed. The architecture becomes dependent on average 
bandwidth of the memory subsystem with less sensitivity to 
the peak latency to access a data element.  

Deep pipelining allows multiple functional units to be 
chained, reducing access to large register files to store 
temporary data. This process is achieved with the 
programmer describing the data flow graph of the 
operations to be performed. Each operation is mapped to a 
set of functional units connected with a network. The 
number of functional units is dependent on the number of 
available logic gates, the number of potential parallel 
operations per cycle, and the user performance 
requirements. 

B. Stream Descriptors 
The architecture includes several independent stream 

units to prefetch data from memory and turn streams into 
FIFO queues of stream elements. Additional stream units 
are created to write stream elements into memory. Each unit 
handles all issues regarding loading/storing of data 
including: address calculation, byte alignment, data 
ordering, and memory bus interface. 

Data is transferred though the stream units which are 
programmed using stream descriptors. A stream descriptor 
is represented by the tuple (Type, Start_Address, Stride, 
Span0, Skip0, Span1, Skip1, Size), where: 

• Type indicates the element size in bytes (Type is 0 for 
bytes, 1 for 16-bit half-words, etc.). 

• Start_Address represents the memory address of the first 
stream element. 

• Stride is the spacing, in number of elements, between two 
consecutive stream element. 

• Span0 is the number of elements that are gathered before 
applying the skip0 offset. 

• Skip0 is the offset applied between groups of span0 
elements, after the stride has been applied 

• Span1 is the number of elements that are gathered before 
applying the skip1 offset. 

• Skip1 is the offset applied between groups of span1 
elements, after the stride and the Skip0 have been applied. 
The Stride, Span, Skip, and Type fields define the shape 

of the data stream in memory, while Start_Address define 
the location of the first data element. Figure 1 shows an 
example of a static memory access pattern described by a  
two dimensional stream descriptor.  

C. Stream Computation 
The streaming paradigm allows the application to exploit 

the large number of functional units that are readily 
available in modern VLSI technologies without taxing the 
communication resources [10]. We are using a “Data-flow 
Graph” (DFG) language to express operations in a machine-
independent manner. A DFG consists of nodes, representing 
basic arithmetic, and logical operations composing the 
vector operation, and directed edges, representing the 
dependency of one operation on the output of a previous 
operation [7].  

III. TEMPLATE-BASED HARDWARE GENERATION 
The problem we are addressing in this paper is the 

automatic generation of synthesizable accelerators from the 
streaming representation of Section II. Our approach is to 
select designs from a well-engineered framework, instead of 
generating the given hardware from a generic representation 
of a high level language. We generate highly optimized 
designs at various points at the cost-performance space 
based on the given application, the user requirements, and 
the capabilities of the rest of the system.  

Figure 2 shows the iterative design flow. The main points 
of the tool flow are the following: 
• a common template based on a regular architecture that 

accesses and processes streaming data, 
• an iteration engine that instantiates system parameters that 

meet system and user constraints to initiate the next 
iteration of space search, 

• a scheduler that performs sDFG scheduling and hardware 
allocation based on the parameters set by the iterator, 

• an RTL constructor engine that produces optimized 
Verilog code for the data path and the stream units, 
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2-D Subarray with column-wise access

(Type, SA, Stride, Span[0], Skip[0], Span[1], Skip[1], Size) =
(Byte, 4, 200, 2, -299, 2, -300, 8)  

Figure 1. Stream descriptors for a memory access pattern 
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• and an evaluation phase that synthesizes and maps the 
designs in FPGA and produces quality metrics such as 
area, and clock speed 
Each of the data path and the stream unit have their own 

acceleration generation process. The rest of the section 
details each one of these engines and their interfaces. 

A. Architectural template 
The architectural template consists of two parts: the 

streaming data path and the stream unit (Figure 3). The 
stream unit expands into one or more input and output 
stream modules, and is generated to match the 
characteristics of the stream descriptors, and the 
characteristics of the bus-based system and the streaming 
data path. The data path is generated to execute a given 
sDFG to match user and system constraints in the 
specification space.  

Stream Unit 
The stream unit transfers streams from a system memory 

or peripheral, through a system bus and present them in-
order to the accelerator. Likewise, it transfers processed 
output streams back to the memory. 

The stream queue and the alignment unit store the 
incoming stream data and present them to the data path in-
order. The number of storage elements, their size, and their 
interconnect depend on the stream descriptors and the 
requested bandwidth of the data.  

The peak bandwidth for the accelerator depends on the 
schedule of the sDFG as we will discuss later. The size of 
the storage elements matches the size of the stream 
elements, for example it can be one byte for 8-bit pixel data. 

Finally, the interconnect between the storage elements and 
the flow of streaming data between them depends on the 
span and skip of the stream description.  

As we will examine later, the space iterator may also 
decide to allocate extra registers to the stream queue to 
match the system bus bandwidth capabilities. For example, 
in the case of an 8-byte system bus, the stream queue can 
have 8 or more storage elements to exploit the spatial 
locality of the memory accesses.  

The bus line buffer is used to temporarily hold the data 
accessed from the system bus, and filter them to the stream 
queue when there is enough space. By detecting cases 
where the stride is greater than 1, the bus line buffer 
eliminates unnecessary elements before sending the stream 
to the stream queue.  

The address generation unit (AGU) is hardwired to 
generate the memory access pattern of the stream 
descriptors. The number of registers that store internal 
variables, their width, the value and size of the stream 
description parameters are some of the configuration 
mechanisms of this unit. 
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Figure 2 Template-based accelerator generation 

The AGU aggressively generates addresses for data 
prefetching and sends them to the Address Line Buffer 
module. This module stores the addresses, merges addresses 
that fall within the same bus word (or burst size word in 
case bus burst is enabled), and competes for bus accesses 
with the other stream units. The generated number of 
buffers in the Address Line Buffer matches the average 
latency of the memory and bus systems and the capability of 
the bus to pipeline data accesses. For example, for a system 
bus that can pipeline up to two read accesses to a memory 
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location the generator will create an Address Line Buffer 
with at least two address buffers.  

Finally, the arbiter regulates the access of the stream 
units to the system bus. It uses a round-robin algorithm, and 
its complexity depends on the number of input and output 
streams of the sDFG. 

 
 Data path 

The data path template of Figure 3 is an interconnect of 
reconfigurable functional units that produce and consume 
streaming data, and communicate via reconfigurable links. 
The links are chained at the output of a slice of a functional 
unit, and have a single input and potentially multiple 
outputs. They implement variable delay lines without the 
need of an explicitly addressable register file. The template 
also allow for the usage of a set of named registers that can 
be used by the sDFG to pass values from one sDFG 
iteration to the next and implement cross-iteration 
dependencies, and also to pass parameters to the program. 
Furthermore, the programming model allows for the use of 
accumulators for reduction operations. 

The control logic of the data path is distributed and 
spatially close to the corresponding functional unit, 
multiplexer or line queue. This was an explicit design 

decision to avoid creating critical paths due to long wires in 
modern VLSI technologies.  
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Figure 4. The accelerator template consists of the Data Path 
and the Stream Unit templates. Different optimizations are 
used in each case. 

 The type of the functional units (ALUs, multipliers, 
shifters, etc.), the specific operation performed within a type 
(e.g. only addition and subtraction for an ALU), the width 
of the functional unit, the size and number of storage 
elements of a FIFO, the interconnects between functional 
units (via FIFOs), the bandwidth from and towards the 
stream units are some of the reconfigurable parameters of 
the data path.  

The data path requests data-sourcing from the input 
stream module and data-sinking from the output stream 
module. A simple, demand-driven protocol between the two 
modules is used to implement the communication. Stall 
signals from the stream units to the data path allow for a 
less than perfect memory system. A stall signal from any 
stream unit will cause the stall of the accelerator engine.  

B. Architectural Iterator 
The iterator selects a set of parameters in the space 

specified by the user and the system. For each one of this 
set of parameters, the tool flow builds an implementation by  
breaking the task into the implementation of the data path 
and the implementation of the stream unit. 

Scheduling and High Level Implementation 
The scheduler receives as input the sDFG along with the 

user and system constraints and schedules the operation of 
the sDFG to optimize throughput. The scheduler uses 
modulo scheduling to overlap multiple iterations in each 
cycle and exploits all the available parallelism under the 
resource constraints and data dependencies. The outline of 
the scheduling algorithm is given in Figure 3. The output of 
this stage is a hardware representation of the accelerator at a 
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Figure 3. Scheduling and high level model (HLM) generation 
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higher specification level than an RTL specification (High 
level Model, HLM).  

A strict lower bound of the initiation interval, called 
Minimum Initiation Interval (MII), is obtained by the 
number of available resources and the loop cross-iteration 
data dependencies [17].  

During scheduling, the interconnects are not counted as 
resources, but rather they are “filled-in” during the 
generation of the HLM. By setting the schedule period 
equal to the MII, the scheduler maximizes the throughput of 
the accelerator, which is the main optimization target of the 
tool flow. Next, the schedule is generated within the MII 
window by first scheduling the nodes from top to bottom 
(forward scheduling) using a greedy approach. In this step, 
the nodes are scheduled immediately when all their parents 
have been scheduled and there exists an available resource 
to execute them.  

Then, a backward scheduling heuristic is used to re-
schedule some of the nodes by scheduling from the step 
MII-1 towards the step 0. This, in effect, “spreads out” the 
nodes within the steady-state period of the schedule and 
distributes the schedule more evenly within the MII steps. 
The net effect of this approach is to reduce the latency 
between successive nodes in the schedule, thereby reducing 
the storage requirements of the line delay queues [15].  

The scheduler needs to only generate code for the steady 
state body of the schedule and not for the prologue and 
epilogue as is often the case in modulo scheduling [18]. 
Each data token that populates the FU inputs, outputs and 
line queues in every clock cycle is tagged with a valid bit. 
An operation produces valid output data only if both input 
data are valid. A source operation (like a stream load) 
produces data with valid bits when the data are available, 
and a sink operation (like a stream store) accepts data only 
when they are valid. 

Next, the tool flow binds the operation nodes to the 
functional unit slices, and generates the delay links at the 
output of each slice to store the streaming outputs as they 
are produced by the FUs.  
The stream unit design is generated based on user and 
system constraints. The size and number of buffer elements 
are chosen to meet the performance of the bus as well as the 
target performance of the generated data path. For example, 
the number of bus address queue elements, used to store 
pending addresses, is set to at least the bus pipeline factor so 
that bus transfers are sustained without stalling the data 
path. The number of line buffer elements, used to store data, 
should be at least the bus bandwidth to enable burst 
transfers. In addition, the number of stream data queue 
(used to store pending stream elements in a FIFO) is set to 
match the maximum bandwidth of the data path so that the 
stream unit can buffer the proper number of stream elements 
that can be consumed by the data path in a single cycle.  

C. RTL constructor 
The RTL constructor reads the HLM representation and 

emits structural Verilog for the data path and the stream 
unit.  

D. Evaluator 
At that point, the evaluation process is done by passing 

the resulting Verilog code through the Xilinx ISE tool-flow. 
We synthesize, and map the design targeting a Xilinx 
Virtex-4 architecture. We evaluate the design in terms of 
clock speed, and area overhead. As we will examine in the 
experimental evaluation, we are able to produce high-
quality accelerators both in terms of area, and clock speed. 

IV. EXPERIMENTAL EVALUATION 

A. Methodology 
This section describes the evaluation of the design 

methodology presented in previous sections. An application 
set, shown in Table 1, is selected from a wide range of media 
applications related to video compression, color processing, 
and image processing. Key compute intensive kernels from 
this application set is chosen for implementation. A design 
automation tool, using the design flow shown previously in 
Figure 2, is implemented in C++. The tool accepts each 
sDFG in the application set to generate candidate hardware 
accelerators according to the template shown in Figure 3. 
Different architectural configurations and loop unrolling 
factor are chosen such that Pareto-optimal designs for each 
benchmark can be chosen.  

The generated hardware is synthesized and mapped onto 
a Xilinx Virtex4 LX60 FPGA, and the quality metrics of the 
produced bitstream (area, throughput, clock frequency) are 
recorded to assess the Pareto-optimality of the design 

B. Discussion 
The results of Table 1 show the total number of FPGA, the 

average I/O bandwidth in bytes per cycle between the data 
path and the stream interfaces, and the clock frequency in 

Table 1 Representative performance and are results for a s et of 
multimedia benchmarks 

Streaming 
Kernels 

FPGA 
Slices 

Throughput 
(Bytes/cycle) 

Frequency 
(MHz) 

Binarization 189 1 218 
Open Filter 731 0.15 188 
Edge Detection 1677 0.07 174 
Quantization 236 2 219 
Column DCT 1148 1.23 171 
Row DCT 1129 0.94 149 
Color Processing 
(LPF) 2687 1.1 121 
Color Processing 
(HPF) 2529 1.33 177 
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MHz after synthesis. These results enforce our initial 
premise that template-based approach can produce fast and 
area efficient designs. Using a high level representation 
such as the sDFG allowed for quick architectural 
exploration of different configurations. The streaming 
programming model facilitates the selection of sDFG 
selection and coding. Furthermore, it allows for design 
optimizations of both stream and data path, without 
recoding the benchmark.  

In general, wider designs require more resources because 
the template design requires a larger number of queuing 
elements at the output of each functional unit to store live 
variables at each cycle. On the other hand, wider 
configurations are faster due to the lack of large 
multiplexers at the inputs of the functional units. In all 
cases, the maximum clock frequency is determined by the 
stream interface unit which is slower than the data path. 

V. RELATED WORK 
In this section, we discuss previous work in the areas of 

streaming programming model and streaming architectures, 
architectural automation for ASIC and FPGA design flows, 
and special reconfigurable architectures. 

A. Streaming Programming Model and Architectures 
Using streaming representations to expose concurrency 

and to express data communication explicitly has been 
recognized as an efficient way to both program off-the-shelf 
parallel processors, like graphics chips, and to architect new 
processors. A thorough analysis of the streaming 
programming model is given in [1]. Example streaming 
processors include Merrimac [10], Raw [20], Cell [14], and 
RSVP™ [7].  

B. Architectural automation for ASICs and FPGAs 
There has been an intense interest in the research 

community in the last decade to automate the architectural 
process for ASIC of FPGA tool flows starting from a high 
level representation like C, Java, Matlab, DFGs and so on 
[9].  

The PICO project incorporated a lot of concepts from 
earlier work on VLIW machines, and described a 
methodology to generate a VLIW engine along with an 
accelerator optimized for a particular application [18]. 
Similar projects include the Cyber tool [21], the OCAPI 
[19], and the DEFACTO compiler [23]. The Impulse-C [17] 
and Handel-C [24] tools are efforts to utilize C with 
extensions as a high level RTL language for FPGA design. 
At an even higher level of abstraction, the Matlab to gates 
compiler from AccelChip [3] targets mainly DSP kernels on 
FPGA platforms. Most of the above mentioned approaches 
use C as a more “user-friendly” hardware description 
language, and they add constructs to enhance concurrency, 
variable bitwidth, and so on in order to make C more 
amenable to hardware design. We believe that a template-
based architectural automation that evaluates a large number 
of potential designs and focus on the most “profitable” parts 

of the code is able to offer both design efficiency in terms of 
speed and cost, as well as programmability for developers 
that are not well-versed in hardware design.  

A related problem is to automatically detect clusters of 
heavily executed assembly-level instructions that can be 
merged and extend the ISA of the processor. This research 
extends to both an ASIC environment [8] for the ARM 
processor.  

C. Reconfigurable processors 
A number of academic projects and commercial products 

are tackling the hardware synthesis problem by designing 
efficient compile-time configurable or run-time 
reconfigurable architectures. This effort also stems from the 
fact that off-the-shelf, commercial FPGA architectures have 
little if any support for run-time reconfiguration. The GARP 
[5] and SCORE projects [6] propose the addition of 
reconfigurable planes that act as coprocessors of a scalar 
processor (MIPS in the case of Garp). Multiple planes offer 
a very fast context switch mechanism for run-time 
reconfiguration, and allows for virtual compute pages that 
can be mapped on the fabric both spatially and temporally.  

Other projects include the RaPid architecture [11], the 
Chimaera architecture [22], the PipeRench architecture [13], 
and the RAW/Virtual Wires research [2].  

VI. CONCLUSION AND FUTURE WORK 
A design methodology and prototype tool to automate the 

design and architectural exploration of hardware 
accelerators are described in this paper. These accelerators 
are programmed as streaming kernels to map to the 
streaming accelerators. In comparison to other approaches, 
we utilize a well-engineered template to enable fast 
convergence to an area and speed efficient design. We show 
how this methodology is used for an application set with 
various architectural configurations. New streaming 
accelerators are generated without recoding the application 
or re-design of the platform. 
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