
 1

Mapping Streaming Architectures on Reconfigurable
Platforms

 Nikolaos Bellas, Sek M. Chai, Malcolm Dwyer, Dan Linzmeier
 Embedded Systems Research, Motorola Labs
 (bellas@labs.motorola.com)

Abstract— Hardware accelerators, used as application-
specific extensions to the computational capabilities of a
system, are efficient mechanisms to enhance the performance
and reduce the power dissipation in a System On Chip (SoC).
These accelerators execute on the computationally critical part
of the application, and offload work from the main processors.
In this paper, we present a design automation tool that
generates accelerators based on a given application kernel. The
accelerators are processing streaming data, and support a
programming model which can naturally express a large
number of embedded applications, and which results in
efficient and fast hardware implementations. We demonstrate
the applicability of the tool for architectural space exploration
for a number of media applications, with results on area,
throughput, and clock speeds.

I. INTRODUCTION
he levels of integration of modern FPGAs have
advanced to a point where the performance and

flexibility are sufficient to map all functions of a complex
SoCs into a single die. FPGA manufacturers have
embedded fixed functionality cores such as general purpose
processors, multipliers, multi-ported SRAM memories, and
DSP slices in order to speed-up commonly used
applications. At the same time, tool vendors have offered a
plethora of pre-defined peripherals, fixed IP functions, and
even synthesizable processor cores for the designer to
customize the chip. The availability of a tool flow that
abstracts out the particular hardware structures and presents
a software-only front end interface to the application
developer is a necessary step to precipitate the acceptance
of FPGAs as SoC platforms.

Typically, scalar processors are reasonably efficient in
handling normal conditional code with a low degree of
instruction and data level parallelism. However, they are
inefficient for high throughput, parallelizable code due to
limited support of all kinds of parallelism (instruction, data,
and task). They are further limited by the low memory
bandwidth due to the narrow pipes to the main core.

 In this paper, we describe an automation process which
maps streaming data flow graphs (sDFG) to accelerators of
the main scalar core. The streaming programming model
assumes that the kernels process streams of data with a
relatively limited lifetime, and deterministic memory access
pattern. The streaming model decouples the description of
memory access sequences from the computation within a
kernel, thus making the customization of each of these two
components (computation and memory access) easier and

more re-usable.
The design space exploration involves an iterative design

cycle in which Pareto-optimal implementations of a given
sDFG are produced under user and system constraints. For
each iteration, a search space iterator instantiates a set of
parameters that meet the given constraints, then a scheduler
produces a schedule of operations optimized for throughput,
and finally an RTL generation back-end tool produces the
hardware description of the accelerator. Each generated
accelerator is synthesized and implemented on an FPGA to
be evaluated in terms of stream throughput, area, and clock
speed, and later classified as Pareto-optimal or eliminated
from consideration.

The contributions of the papers are the following:
• first, we propose the usage of the streaming paradigm

(sDFGs) for application acceleration in a SoC-based
reconfigurable fabric.

• second, we propose a template-based, automated method
to perform architectural exploration on the accelerated
application by evaluating the design space separately for
the stream unit and the stream computational unit.

• and third, we explain how these concepts are placed in the
context of a bus-based SoC design and how the
accelerators are connected to the rest of the system.
The rest of the paper is organized as follows: Section II

gives background information on the streaming
programming paradigm and explains how it exploits
technology trends that favor computation over
communication. Section III details our template-based
methodology, and section IV presents a set of embedded
applications and the results of the method on a Xilinx
Virtex-4 FPGA. Section V gives a summary of previous
work on the relative areas, and Section VI presents the
conclusion and future work.

II. STREAM PROGRAMMING MODEL

A. Architecture
The hardware accelerators generated by our method

follow the streaming architectural paradigm [4]. They act as
filters on input streaming data to generate the output
streaming data specified by the streaming data flow graphs.
Stream kernels exhibit a large degree of data and task level
parallelism, with regular or even statically defined
communication patterns [1].

The regularity of data access and the short lifetime of the

T

 2

stream data allow for efficient optimization of the
communication and the computational portions of the
algorithm. Even more importantly, they make possible the
decoupling of the stream access from the computation and
their separate optimization.

 Under this model, memory load/store operations no
longer need to be scheduled amongst compute operations
and optimal scheduling of operations now does not depend
upon memory latencies. With this independence, the
underlying memory system may be changed or may exhibit
variable latencies, as with caches, with no effect on the
computation schedule.

The decoupled memory access allows data pre-fetching
to occur during computation. The programmer describes the
shape and location of data in memory using stream
descriptors. This decoupling allows the stream units to take
advantage of available bandwidth to prefetch data before it
is needed. The architecture becomes dependent on average
bandwidth of the memory subsystem with less sensitivity to
the peak latency to access a data element.

Deep pipelining allows multiple functional units to be
chained, reducing access to large register files to store
temporary data. This process is achieved with the
programmer describing the data flow graph of the
operations to be performed. Each operation is mapped to a
set of functional units connected with a network. The
number of functional units is dependent on the number of
available logic gates, the number of potential parallel
operations per cycle, and the user performance
requirements.

B. Stream Descriptors
The architecture includes several independent stream

units to prefetch data from memory and turn streams into
FIFO queues of stream elements. Additional stream units
are created to write stream elements into memory. Each unit
handles all issues regarding loading/storing of data
including: address calculation, byte alignment, data
ordering, and memory bus interface.

Data is transferred though the stream units which are
programmed using stream descriptors. A stream descriptor
is represented by the tuple (Type, Start_Address, Stride,
Span0, Skip0, Span1, Skip1, Size), where:

• Type indicates the element size in bytes (Type is 0 for
bytes, 1 for 16-bit half-words, etc.).

• Start_Address represents the memory address of the first
stream element.

• Stride is the spacing, in number of elements, between two
consecutive stream element.

• Span0 is the number of elements that are gathered before
applying the skip0 offset.

• Skip0 is the offset applied between groups of span0
elements, after the stride has been applied

• Span1 is the number of elements that are gathered before
applying the skip1 offset.

• Skip1 is the offset applied between groups of span1
elements, after the stride and the Skip0 have been applied.
The Stride, Span, Skip, and Type fields define the shape

of the data stream in memory, while Start_Address define
the location of the first data element. Figure 1 shows an
example of a static memory access pattern described by a
two dimensional stream descriptor.

C. Stream Computation
The streaming paradigm allows the application to exploit

the large number of functional units that are readily
available in modern VLSI technologies without taxing the
communication resources [10]. We are using a “Data-flow
Graph” (DFG) language to express operations in a machine-
independent manner. A DFG consists of nodes, representing
basic arithmetic, and logical operations composing the
vector operation, and directed edges, representing the
dependency of one operation on the output of a previous
operation [7].

III. TEMPLATE-BASED HARDWARE GENERATION
The problem we are addressing in this paper is the

automatic generation of synthesizable accelerators from the
streaming representation of Section II. Our approach is to
select designs from a well-engineered framework, instead of
generating the given hardware from a generic representation
of a high level language. We generate highly optimized
designs at various points at the cost-performance space
based on the given application, the user requirements, and
the capabilities of the rest of the system.

Figure 2 shows the iterative design flow. The main points
of the tool flow are the following:
• a common template based on a regular architecture that

accesses and processes streaming data,
• an iteration engine that instantiates system parameters that

meet system and user constraints to initiate the next
iteration of space search,

• a scheduler that performs sDFG scheduling and hardware
allocation based on the parameters set by the iterator,

• an RTL constructor engine that produces optimized
Verilog code for the data path and the stream units,

0

2

1

3

4

6

5

7

4 92

2-D Subarray with column-wise access

(Type, SA, Stride, Span[0], Skip[0], Span[1], Skip[1], Size) =
(Byte, 4, 200, 2, -299, 2, -300, 8)

Figure 1. Stream descriptors for a memory access pattern

 3

• and an evaluation phase that synthesizes and maps the
designs in FPGA and produces quality metrics such as
area, and clock speed
Each of the data path and the stream unit have their own

acceleration generation process. The rest of the section
details each one of these engines and their interfaces.

A. Architectural template
The architectural template consists of two parts: the

streaming data path and the stream unit (Figure 3). The
stream unit expands into one or more input and output
stream modules, and is generated to match the
characteristics of the stream descriptors, and the
characteristics of the bus-based system and the streaming
data path. The data path is generated to execute a given
sDFG to match user and system constraints in the
specification space.

Stream Unit
The stream unit transfers streams from a system memory

or peripheral, through a system bus and present them in-
order to the accelerator. Likewise, it transfers processed
output streams back to the memory.

The stream queue and the alignment unit store the
incoming stream data and present them to the data path in-
order. The number of storage elements, their size, and their
interconnect depend on the stream descriptors and the
requested bandwidth of the data.

The peak bandwidth for the accelerator depends on the
schedule of the sDFG as we will discuss later. The size of
the storage elements matches the size of the stream
elements, for example it can be one byte for 8-bit pixel data.

Finally, the interconnect between the storage elements and
the flow of streaming data between them depends on the
span and skip of the stream description.

As we will examine later, the space iterator may also
decide to allocate extra registers to the stream queue to
match the system bus bandwidth capabilities. For example,
in the case of an 8-byte system bus, the stream queue can
have 8 or more storage elements to exploit the spatial
locality of the memory accesses.

The bus line buffer is used to temporarily hold the data
accessed from the system bus, and filter them to the stream
queue when there is enough space. By detecting cases
where the stride is greater than 1, the bus line buffer
eliminates unnecessary elements before sending the stream
to the stream queue.

The address generation unit (AGU) is hardwired to
generate the memory access pattern of the stream
descriptors. The number of registers that store internal
variables, their width, the value and size of the stream
description parameters are some of the configuration
mechanisms of this unit.

Accelerator
Template

Accelerator
Template

System
Constraints

System
Constraints

User
Constraints

User
Constraints

Architectural
Iterator

Architectural
Iterator

Synthesizable
RTL

Synthesizable
RTL

High Level
Accelerator

Specification

High Level
Accelerator

Specification

Component
Library

Component
Library

Parameter
Instantiation
Parameter

Instantiation

Set of
sDFGs
Set of
sDFGs

Stream
Descriptors

Stream
Descriptors

Application
Specifications
(set of sDFG)

Application
Specifications
(set of sDFG)

Design
Evaluator

(Synthesis, P&R)

Design
Evaluator

(Synthesis, P&R)

RTL
Constructor

RTL
Constructor

Scheduling &
Implementation

specific generation

Scheduling &
Implementation

specific generation

sDFG
melding

(optional)

sDFG
melding

(optional)

System
Space

Program code

Figure 2 Template-based accelerator generation

The AGU aggressively generates addresses for data
prefetching and sends them to the Address Line Buffer
module. This module stores the addresses, merges addresses
that fall within the same bus word (or burst size word in
case bus burst is enabled), and competes for bus accesses
with the other stream units. The generated number of
buffers in the Address Line Buffer matches the average
latency of the memory and bus systems and the capability of
the bus to pipeline data accesses. For example, for a system
bus that can pipeline up to two read accesses to a memory

 4

location the generator will create an Address Line Buffer
with at least two address buffers.

Finally, the arbiter regulates the access of the stream
units to the system bus. It uses a round-robin algorithm, and
its complexity depends on the number of input and output
streams of the sDFG.

 Data path

The data path template of Figure 3 is an interconnect of
reconfigurable functional units that produce and consume
streaming data, and communicate via reconfigurable links.
The links are chained at the output of a slice of a functional
unit, and have a single input and potentially multiple
outputs. They implement variable delay lines without the
need of an explicitly addressable register file. The template
also allow for the usage of a set of named registers that can
be used by the sDFG to pass values from one sDFG
iteration to the next and implement cross-iteration
dependencies, and also to pass parameters to the program.
Furthermore, the programming model allows for the use of
accumulators for reduction operations.

The control logic of the data path is distributed and
spatially close to the corresponding functional unit,
multiplexer or line queue. This was an explicit design

decision to avoid creating critical paths due to long wires in
modern VLSI technologies.

Control
Registers

Multiplexer Tree

FU

co
nt

ro
l

FU

co
nt

ro
l Reg

Reg
Acc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

addr1v

addr2i

addr3v
addr4v

A
dd

re
ss

 B
uf

fe
r

A
dd

rM
er

ge

Bus Line Buffer

Stream Queue

To other
Input Stream

S
tre

am
 In

te
rfa

ce
 T

em
pl

at
e

D
at

a
P

at
h

Te
m

pl
at

e

Control
Registers

Multiplexer Tree

FU

co
nt

ro
l

FU

co
nt

ro
l

FU

co
nt

ro
l

FU

co
nt

ro
l Reg

Reg
Acc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

addr1v addr1v

addr2i addr2i

addr3v addr3v
addr4v addr4v

A
dd

re
ss

 B
uf

fe
r

A
dd

rM
er

ge

Bus Line Buffer

Stream Queue

To other
Input Stream

S
tre

am
 In

te
rfa

ce
 T

em
pl

at
e

D
at

a
P

at
h

Te
m

pl
at

e

Figure 4. The accelerator template consists of the Data Path
and the Stream Unit templates. Different optimizations are
used in each case.

 The type of the functional units (ALUs, multipliers,
shifters, etc.), the specific operation performed within a type
(e.g. only addition and subtraction for an ALU), the width
of the functional unit, the size and number of storage
elements of a FIFO, the interconnects between functional
units (via FIFOs), the bandwidth from and towards the
stream units are some of the reconfigurable parameters of
the data path.

The data path requests data-sourcing from the input
stream module and data-sinking from the output stream
module. A simple, demand-driven protocol between the two
modules is used to implement the communication. Stall
signals from the stream units to the data path allow for a
less than perfect memory system. A stall signal from any
stream unit will cause the stall of the accelerator engine.

B. Architectural Iterator
The iterator selects a set of parameters in the space

specified by the user and the system. For each one of this
set of parameters, the tool flow builds an implementation by
breaking the task into the implementation of the data path
and the implementation of the stream unit.

Scheduling and High Level Implementation
The scheduler receives as input the sDFG along with the

user and system constraints and schedules the operation of
the sDFG to optimize throughput. The scheduler uses
modulo scheduling to overlap multiple iterations in each
cycle and exploits all the available parallelism under the
resource constraints and data dependencies. The outline of
the scheduling algorithm is given in Figure 3. The output of
this stage is a hardware representation of the accelerator at a

Compute
MII

sDFG

Unroll sDFG

machine
configuration

Unroll factor

Schedule nodes
for throughput
within the MII

window

Forward
Scheduling

Backward
Scheduling

}

Iteration folding

Schedule
generation

Slice allocation

FU HLM
generation

Delay queue
HLM generation

Control Logic
HLM generation

Accelerator HLM
generation

Figure 3. Scheduling and high level model (HLM) generation

 5

higher specification level than an RTL specification (High
level Model, HLM).

A strict lower bound of the initiation interval, called
Minimum Initiation Interval (MII), is obtained by the
number of available resources and the loop cross-iteration
data dependencies [17].

During scheduling, the interconnects are not counted as
resources, but rather they are “filled-in” during the
generation of the HLM. By setting the schedule period
equal to the MII, the scheduler maximizes the throughput of
the accelerator, which is the main optimization target of the
tool flow. Next, the schedule is generated within the MII
window by first scheduling the nodes from top to bottom
(forward scheduling) using a greedy approach. In this step,
the nodes are scheduled immediately when all their parents
have been scheduled and there exists an available resource
to execute them.

Then, a backward scheduling heuristic is used to re-
schedule some of the nodes by scheduling from the step
MII-1 towards the step 0. This, in effect, “spreads out” the
nodes within the steady-state period of the schedule and
distributes the schedule more evenly within the MII steps.
The net effect of this approach is to reduce the latency
between successive nodes in the schedule, thereby reducing
the storage requirements of the line delay queues [15].

The scheduler needs to only generate code for the steady
state body of the schedule and not for the prologue and
epilogue as is often the case in modulo scheduling [18].
Each data token that populates the FU inputs, outputs and
line queues in every clock cycle is tagged with a valid bit.
An operation produces valid output data only if both input
data are valid. A source operation (like a stream load)
produces data with valid bits when the data are available,
and a sink operation (like a stream store) accepts data only
when they are valid.

Next, the tool flow binds the operation nodes to the
functional unit slices, and generates the delay links at the
output of each slice to store the streaming outputs as they
are produced by the FUs.
The stream unit design is generated based on user and
system constraints. The size and number of buffer elements
are chosen to meet the performance of the bus as well as the
target performance of the generated data path. For example,
the number of bus address queue elements, used to store
pending addresses, is set to at least the bus pipeline factor so
that bus transfers are sustained without stalling the data
path. The number of line buffer elements, used to store data,
should be at least the bus bandwidth to enable burst
transfers. In addition, the number of stream data queue
(used to store pending stream elements in a FIFO) is set to
match the maximum bandwidth of the data path so that the
stream unit can buffer the proper number of stream elements
that can be consumed by the data path in a single cycle.

C. RTL constructor
The RTL constructor reads the HLM representation and

emits structural Verilog for the data path and the stream
unit.

D. Evaluator
At that point, the evaluation process is done by passing

the resulting Verilog code through the Xilinx ISE tool-flow.
We synthesize, and map the design targeting a Xilinx
Virtex-4 architecture. We evaluate the design in terms of
clock speed, and area overhead. As we will examine in the
experimental evaluation, we are able to produce high-
quality accelerators both in terms of area, and clock speed.

IV. EXPERIMENTAL EVALUATION

A. Methodology
This section describes the evaluation of the design

methodology presented in previous sections. An application
set, shown in Table 1, is selected from a wide range of media
applications related to video compression, color processing,
and image processing. Key compute intensive kernels from
this application set is chosen for implementation. A design
automation tool, using the design flow shown previously in
Figure 2, is implemented in C++. The tool accepts each
sDFG in the application set to generate candidate hardware
accelerators according to the template shown in Figure 3.
Different architectural configurations and loop unrolling
factor are chosen such that Pareto-optimal designs for each
benchmark can be chosen.

The generated hardware is synthesized and mapped onto
a Xilinx Virtex4 LX60 FPGA, and the quality metrics of the
produced bitstream (area, throughput, clock frequency) are
recorded to assess the Pareto-optimality of the design

B. Discussion
The results of Table 1 show the total number of FPGA, the

average I/O bandwidth in bytes per cycle between the data
path and the stream interfaces, and the clock frequency in

Table 1 Representative performance and are results for a s et of
multimedia benchmarks

Streaming
Kernels

FPGA
Slices

Throughput
(Bytes/cycle)

Frequency
(MHz)

Binarization 189 1 218
Open Filter 731 0.15 188
Edge Detection 1677 0.07 174
Quantization 236 2 219
Column DCT 1148 1.23 171
Row DCT 1129 0.94 149
Color Processing
(LPF) 2687 1.1 121
Color Processing
(HPF) 2529 1.33 177

 6

MHz after synthesis. These results enforce our initial
premise that template-based approach can produce fast and
area efficient designs. Using a high level representation
such as the sDFG allowed for quick architectural
exploration of different configurations. The streaming
programming model facilitates the selection of sDFG
selection and coding. Furthermore, it allows for design
optimizations of both stream and data path, without
recoding the benchmark.

In general, wider designs require more resources because
the template design requires a larger number of queuing
elements at the output of each functional unit to store live
variables at each cycle. On the other hand, wider
configurations are faster due to the lack of large
multiplexers at the inputs of the functional units. In all
cases, the maximum clock frequency is determined by the
stream interface unit which is slower than the data path.

V. RELATED WORK
In this section, we discuss previous work in the areas of

streaming programming model and streaming architectures,
architectural automation for ASIC and FPGA design flows,
and special reconfigurable architectures.

A. Streaming Programming Model and Architectures
Using streaming representations to expose concurrency

and to express data communication explicitly has been
recognized as an efficient way to both program off-the-shelf
parallel processors, like graphics chips, and to architect new
processors. A thorough analysis of the streaming
programming model is given in [1]. Example streaming
processors include Merrimac [10], Raw [20], Cell [14], and
RSVP™ [7].

B. Architectural automation for ASICs and FPGAs
There has been an intense interest in the research

community in the last decade to automate the architectural
process for ASIC of FPGA tool flows starting from a high
level representation like C, Java, Matlab, DFGs and so on
[9].

The PICO project incorporated a lot of concepts from
earlier work on VLIW machines, and described a
methodology to generate a VLIW engine along with an
accelerator optimized for a particular application [18].
Similar projects include the Cyber tool [21], the OCAPI
[19], and the DEFACTO compiler [23]. The Impulse-C [17]
and Handel-C [24] tools are efforts to utilize C with
extensions as a high level RTL language for FPGA design.
At an even higher level of abstraction, the Matlab to gates
compiler from AccelChip [3] targets mainly DSP kernels on
FPGA platforms. Most of the above mentioned approaches
use C as a more “user-friendly” hardware description
language, and they add constructs to enhance concurrency,
variable bitwidth, and so on in order to make C more
amenable to hardware design. We believe that a template-
based architectural automation that evaluates a large number
of potential designs and focus on the most “profitable” parts

of the code is able to offer both design efficiency in terms of
speed and cost, as well as programmability for developers
that are not well-versed in hardware design.

A related problem is to automatically detect clusters of
heavily executed assembly-level instructions that can be
merged and extend the ISA of the processor. This research
extends to both an ASIC environment [8] for the ARM
processor.

C. Reconfigurable processors
A number of academic projects and commercial products

are tackling the hardware synthesis problem by designing
efficient compile-time configurable or run-time
reconfigurable architectures. This effort also stems from the
fact that off-the-shelf, commercial FPGA architectures have
little if any support for run-time reconfiguration. The GARP
[5] and SCORE projects [6] propose the addition of
reconfigurable planes that act as coprocessors of a scalar
processor (MIPS in the case of Garp). Multiple planes offer
a very fast context switch mechanism for run-time
reconfiguration, and allows for virtual compute pages that
can be mapped on the fabric both spatially and temporally.

Other projects include the RaPid architecture [11], the
Chimaera architecture [22], the PipeRench architecture [13],
and the RAW/Virtual Wires research [2].

VI. CONCLUSION AND FUTURE WORK
A design methodology and prototype tool to automate the

design and architectural exploration of hardware
accelerators are described in this paper. These accelerators
are programmed as streaming kernels to map to the
streaming accelerators. In comparison to other approaches,
we utilize a well-engineered template to enable fast
convergence to an area and speed efficient design. We show
how this methodology is used for an application set with
various architectural configurations. New streaming
accelerators are generated without recoding the application
or re-design of the platform.

REFERENCES
[1] Amarasinghe S., Thies B. Architectures, Languages and Compilers

for the Streaming Domain. Tutorial at the 12th Annual International
Conference on Parallel Architectures and Compilation Techniques,
New Orleans, LA

[2] Babb J., et. al. Parallelizing Applications into Silicon. Proceedings of
the 7th IEEE Symposium on Field Custom Computing Machines
(FCCM), April 1999, Napa Valley, CA

[3] Banerjee P. et. al.. A MATLAB compiler for distributed,
heterogeneous, reconfigurable computing systems. Proceedings of the
IEEE Symposium on Field Custom Computing Machines (FCCM),
April 17-19, 2000, pp. 39-48, Napa Valley, CA

[4] Nikolaos Bellas, Sek M. Chai, Malcolm Dwyer, Dan Linzmeier.
FPGA implementation of a license plate recognition SoC using
automatically generated streaming accelerators. 13th Reconfigurable
Architectures Workshop (RAW), 25-26 April 2006, Rhodes, Greece

[5] Callahan T., Hauser J., Wawrzynek J. The Garp Architecture and C
Compiler. IEEE Computer Magazine, vol. 33, no. 4, April 2000, pp.
62-69

[6] Caspi E., Huang R., Yeh J., Markovskiy Y., DeHon A., Wawrzynek J.
Stream Computations organized for Reconfigurable Execution

 7

(SCORE): Introduction and Tutorial. BRASS research group
technical report, University of California, Berkeley, August 2000

[7] Chirisescu S., et. al. The Reconfigurable Streaming Vector Processor,
RSVP™. Proceedings of the 36th International Conference on
Microarchitecture, December 2003, pp. 141-150, San Diego, CA

[8] Clark N., Zhong H., and Mahlke S. Processor Acceleration Through
Automated Instruction Set Customization. Proceedings of the 36th
International Symposium on Microarchitecture, December 3-5, 2003,
pp. 129-140,San Diego, CA

[9] Compton K., Hauck S. Reconfigurable Computing: A Survey of
Systems and Software. ACM Computing Surveys, vol. 34, No. 2,
June 2002, pp. 171-210

[10] Dally W. J., Hanrahan P., Erez M., Knight T. J., Labonté F., Ahn J.H.,
Jayasena N., Kapasi U. J., Das A., Gummaraju J., Buck, I. Merrimac:
Supercomputing with Streams. Proceedings of the 2003
Supercomputing Conference, November 2003, pp-35-42, Phoenix,
AZ

[11] Ebeling C., Cronquist D., Franklin P., Secosky J., Berg S. Mapping
Applications to the RaPiD configurable architecture. Proceedings of
the 5th IEEE Symposium on Field Custom Computing Machines
(FCCM), April 16-18, 1997, pp. 106-115, Napa Valley, CA

[12] Gokhale M., Stone J., Arnold J., Kalinowski M. Stream-Oriented
FPGA computing in the Streams-C High Level Language.
Proceedings of the 8th IEEE Symposium on Field Custom Computing
Machines (FCCM), April 17-19, 2000, pp. 39-48, Napa Valley, CA

[13] Goldstein S. C. et. al. PipeRench: A Reconfigurable Architecture and
Compiler. IEEE Computer Magazine, vol. 33, no. 4 April 2000, , pp.
70-77

[14] Gschwind M., Hofstee P., Flachs B., Hopkins M., Watanabe Y.,
Yamazaki T. A novel SIMD architecture for the Cell heterogeneous
chip-multiprocessors. Hot Chips XVII, August 15-16, 2005, Palo
Alto, CA

[15] Hwang C. T., Hsu Y. S., Lin Y. L. PLS: A Scheduler for Pipeline
Synthesis. IEEE Transactions of Integrated Circuits and Systems, vol.
12, no. 9, September 1993, pp. 1279-1286

[16] Kathail V., Aditya S., Schreiber R., Rau B.R., Cronquist D.,
Sivaraman M. PICO: Automatically Designing Custom Computers.
IEEE Computer Magazine, vol. 35, no. 9, September 2002, pp. 39-47

[17] Pellerin D., Thibault S. Practical FPGA Programming in C. Prentice
Hall, 2005

[18] Rau B. R. Iterative Modulo Scheduling. International Journal of
Parallel Processing, 24:3-64, 1996

[19] Schaumont P., Vernalde S., Rijnders L., Engels M., Bolsen I. A
programming environment for the design of complex high speed
ASICs. Proceedings of the 35th Design Automation Conference
(DAC), June 1998, pp. 315-320, San Francisco, CA

[20] Taylor M. B., et. al. The RAW Microprocessor: A Computational
Fabric for Software Circuits and General Purpose Programs. IEEE
Micro Magazine, 22(2), March 2002, pp.25-35

[21] Wakabayashi K. and Okamoto T. C-based SoC design flow and EDA
tools: An ASIC and system vendor perspective. IEEE Transactions on
Computer-Aided Design, 19(12):1507-1522, December 2000

[22] Ye A. Z., Moshovos A., Hauck S., Banerjee P. CHIMAERA: A high-
performance architecture with a tightly-coupled reconfigurable unit.
Proceedings of the 27th International Symposium on Computer
Architecture (ISCA), June 2000, pp. 225-235, Vancouver, BC.

[23] H. Ziegler H., Hall M. Evaluating Heuristics in Automatically
Mapping Multi-Loop Applications to FPGAs Proceedings of the 13th
International Symposium on FPGAs, February 2005, pp. 184-195,
Monterey, CA

[24] Celoxica Corporation, Handel-C language reference manual,
www.celoxica.com

RSVP™ is a trademark of Motorola Inc. Other product names are the
property of their respective owner. A patent is pending that claims aspects
of items and methods described in this paper.

	I. INTRODUCTION
	II. Stream Programming Model
	A. Architecture
	B. Stream Descriptors
	C. Stream Computation

	III. Template-Based Hardware Generation
	A. Architectural template
	B. Architectural Iterator
	C. RTL constructor
	D. Evaluator

	IV. Experimental Evaluation
	A. Methodology
	B. Discussion

	V. Related Work
	A. Streaming Programming Model and Architectures
	B. Architectural automation for ASICs and FPGAs
	C. Reconfigurable processors

	VI. Conclusion and Future Work

